

Control of Mercury, Dioxins/Furans, and Particulate Matter Emissions from Sewage Sludge Incinerators for Compliance with New US EPA Regulations

Hans Tandon¹, Mark Colonna¹, Louis Barry², Christopher Doelling²

¹APC Technologies, Inc., Pittsburgh, Pennsylvania ²Chavond-Barry Engineering Corp., Blawenburg, New Jersey

Email: htandon@apctechnologies.net Email: mcolonna@apctechnologies.net Email: ltbarry@chavond-barry.com Email: cmdoelling@chavond-barry.com

TECHNICAL SESSIONS

CBE

Background

- 2011 Regulations, 40 CFR Part 60...
 - Subpart LLLL—Standards of Performance for <u>New</u> Sewage Sludge Incineration Units
 - Subpart MMMM—Emission Guidelines and Compliance Times for <u>Existing</u> Sewage Sludge Incineration Units
- New emission limits for...
 - Particulate matter, HCl, CO, dioxins/furans, mercury, NOX, SO2, cadmium, lead, and fugitive emissions from ash handling
 - >> Mercury was/is a common exceedance
- Compliance deadline March 2016

Background (cont'd)

- This paper/presentation presents 4 case studies of...
 - Air emission control systems installed on four SSIs
 - To control mercury, dioxins/furans, and particulate matter
 - Each of which commenced operation during 2016
- For each case study...
 - Discussion of key design considerations
 - Description of the emission control equipment installed at the sites
 - Compliance testing results
 - Summary of operating experience to date (~2 years of operation)

Selected Process Data for the 4 SSIs

	FBI#1 ⁽⁴⁾	FBI#2	FBI#3	FBI#4
FBI Sludge feed rate,	1,180	4,990	950	1,020
dry kg/hr (dry lbs/hr)	(2,600) ⁽¹⁾	(11,000) ⁽¹⁾	(2,100) ⁽²⁾	(2,250) ⁽¹⁾
Gas exhaust volumetric flow rate, Nm ³ /hr (SCFM)	13,780	48,740	10,080	11,430
	(8,200) ⁽¹⁾	(29,000) ⁽²⁾	(6,000) ⁽²⁾	(6,800) ⁽¹⁾
Existing air emission control equipment (prior to addition of advanced emission controls) ⁽³⁾	 Venturi scrubber Tray scrubber WESP 			

(1) Maximum level.

(2) Typical level.

(3) WESP= Wet electrostatic precipitator.

(4) FBI = Fluidized-bed incinerator.

Emission Limits and Emission Levels Prior to Installation of Advanced Emission Controls

	Emission Levels Prior to Installation of Advanced Emission Controls					
	FBI#1	FBI#2	FBI#3	FBI#4	Regulatory Limit- New SSIs	Regulatory Limit- Existing SSIs
Mercury emissions, mg/dscm @ 7% O ₂	0.750 ⁽¹⁾	0.178 (1)	0.093 (2)	0.074 (2)	0.0010	0.037
Particulate matter emissions, mg/dscm @ 7% O ₂	N/A	3.8 ⁽¹⁾	12.0 ⁽²⁾	1.5 ⁽²⁾	9.6	18
Dioxins/furans emissions, ng/dscm @ 7% O ₂ ⁽³⁾	N/A	N/A	0.095 (TMB) 0.0032 (TEQ)	0.12 (TMB) 0.0072 (TEQ)	0.013 (TMB) 0.0044 (TEQ)	1.2 (TMB) 0.10 (TEQ)
Cadmium emissions, mg/dscm @ 7% O ₂	N/A	N/A	3.4E-04	0.0031	0.0011	0.0016
Lead emissions, mg/dscm @ 7% O ₂	N/A	N/A	0.0054	0.086	6.2E-04	0.0074

TECHNICAL SESSIONS

Key Design Considerations for Emission Controls

- 95.1% 99.9% removal of mercury required >>> Fixed carbon bed of sulfur-impregnated carbon required
- Fixed carbon bed in turn requires...
 - 1. Particulate-free exhaust gas
 - 2. Condensation prevention
 - 3. Provisions to avoid carbon bed hot spots and fires
- Once these pieces are place (for mercury control)...
 >> Particulate matter, cadmium, lead, and dioxins/furans will be controlled effectively at the same time.

Advanced Emission Control Equipment Installed

TECHNICAL SESSIONS

Compliance Test Results

	Regulatory Limit- New SSIs	Regulatory Limit- Existing SSIs	FBI#1	FBI#2	FBI#3	FBI#4
Mercury emissions, mg/dscm @ 7% O ₂ (removal efficiency)	0.0010	0.037	9.76E-06 (99.98%)	4.3E-05 (99.8%)	5.37E-04	2.7E-04
Particulate matter emissions, mg/dscm @ 7% O ₂	9.6	18	0.872	N/A	2.26	6.04
Dioxins/furans emissions, ng/dscm @ 7% O ₂ ⁽¹⁾	0.013 (TMB) 0.0044 (TEQ)	1.2 (TMB) 0.10 (TEQ)	0.00452 (TMB) 7.16E-05 (TEQ)	N/A	4.37E-03 (TEQ)	0.0017 (TEQ)
Cadmium, emissions mg/dscm @ 7% O ₂	0.0011	0.0016	8.36E-05	N/A	1.16E-04	1.4E-04
Lead emissions, mg/dscm @ 7% O ₂	6.2E-04	0.0074	7.98E-04	N/A	3.64E-04	1.99E-04

⁽¹⁾ TMB= Total mass basis; TEQ= Total equivalents basis. The regulation requires that one of the two standards be met.

⁽²⁾ Percentages listed for mercury emissions are removal efficiencies.

we

2017 CHICAGO

Other Findings

- No carbon bed hot spots
- Experience regarding condensation and particulate
- Infrequent particulate filter change-out frequencies

Conclusions

- All four incinerators met the strictest standard for mercury
- All four incinerators met the standards for particulate matter, dioxins/furans, cadmium and lead.
- Three systems have had their one-year compliance test, again with all units passing
- No carbon bed hot spots
- Infrequent particulate filter change-out frequencies costs as projected

Control of Mercury, Dioxins/Furans, and Particulate Matter Emissions from Sewage Sludge Incinerators for Compliance with New US EPA Regulations

Hans Tandon¹, Mark Colonna¹, Louis Barry², Christopher Doelling²

¹APC Technologies, Inc., Pittsburgh, Pennsylvania ²Chavond-Barry Engineering Corp., Blawenburg, New Jersey

Email: htandon@apctechnologies.net Email: mcolonna@apctechnologies.net Email: ltbarry@chavond-barry.com Email: cmdoelling@chavond-barry.com

